Above- and Below-the-Rails **Low On-Resistance Analog Switches** #### **General Description** #### The MAX14759/MAX14761/MAX14763 analog switches are capable of passing bipolar signals that are beyond their supply rails. These devices operate from a single +3.0V to +5.5V supply and support signals in the -25V to +25V range. The MAX14759 is a single-pole/single-throw (SPST) analog switch, while the MAX14761 is a dual-SPST analog switch. The MAX14763 is a single-pole/double-throw (SPDT) analog switch. The MAX14759 features 1Ω (max) on-resistance with a ±200nA (max) on-leakage current. The MAX14761/ MAX14763 feature 2Ω (max) on-resistance with a ± 100 nA (max) on-leakage current. The low on-resistance and high bandwidth allow use in digital- and analog-signal switching applications. The MAX14759/MAX14763 are available in an 8-pin (3mm x 3mm) TDFN package. The MAX14761 is available in a 10-pin (3mm x 3mm) TDFN package. These devices are specified over the -40°C to +85°C extended temperature range. #### Ordering Information/Selector Guide appears at end of data sheet. For related parts and recommended products to use with this part, refer to www.maxim-ic.com/MAX14759.related. #### **Benefits and Features** - ♦ Simplify Power-Supply Requirements - **♦ High Performance** - \diamond Low 1 Ω (max) or 2 Ω (max) On-Resistance - \diamondsuit Low 2.4mΩ (typ) and 5.1mΩ (typ) R_{ON} Flatness - ♦ 500mA (max) Switch Current for MAX14759 - ♦ Thermal Shutdown Protection - ♦ -40°C to +85°C Operating Temperature Range - ♦ High Bandwidth: 100MHz (typ) Insertion Loss - → High-ESD Protection Up to 2kV - ♦ Save Board Space - ♦ Small 8-Pin and 10-Pin TDFN Packages ### **Applications** Industrial Measurement Systems Instrumentation Systems RS-485 Termination Switching **CAN Bus Termination Switching** Opto-Relay Replacement Medical Systems ATE Systems Audio Signal Routing and Switching ### Functional Diagrams/Truth Tables MIXIM Maxim Integrated Products 1 # **Above- and Below-the-Rails Low On-Resistance Analog Switches** #### **ABSOLUTE MAXIMUM RATINGS** | (All voltages referenced to GND, unless otherwise noted.) VCC | 3)±250mA | |--|--------------------| | A, B, A1, A2, B1, B2, COM | ove +70°C)1951.2mW | Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### PACKAGE THERMAL CHARACTERISTICS (Note 1) | 8-Pin TDFN | 10-Pin TDFN | |---|--| | Junction-to-Ambient Thermal Resistance (θ_{JA})48°C/W | Junction-to-Ambient Thermal Resistance (θ_{JA})41°C/W | | Junction-to-Case Thermal Resistance (θ_{JC})8°C/W | Junction-to-Case Thermal Resistance (θ_{JC})9°C/W | Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. #### **ELECTRICAL CHARACTERISTICS** $(V_{CC} = +3.0 \text{V to } +5.5 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } V_{CC} = 5 \text{V and } T_A = +25 ^{\circ}\text{C.})$ (Note 2) | PARAMETER | SYMBOL | CONDITIONS | | MIN | TYP | MAX | UNITS | |-------------------------------|---|--|------------------------------------|------|-----|------|-------| | DC CHARACTERISTICS | | | | | | | | | Power Supply Range | V _{CC} | | | 3.0 | | 5.5 | V | | Continuous Current Through | 1. | (MAX14759) | | -500 | | +500 | - mA | | Switch | I _A _ | (MAX14761/MAX14763) | | -250 | | +250 | ША | | | | \/ < 4.7\/ | $V_{EN} = V_{CC}$ | | 4.1 | 10 | | | Company to Company | | $V_{CC} \le 4.7V$ | $V_{EN} = V_{CC}/2$ | | 4.1 | 10 | mA | | Supply Current | Icc | 1 4 71 | V _{EN_} = V _{CC} | | 2.5 | 6 | | | | | $V_{CC} > 4.7V$ | $V_{EN} = V_{CC}/2$ | | 2.5 | 6 | | | Analog-Signal Range | V _{COM} ,
V _{A_} , V _{B_} | Switch open or closed | | -25 | | +25 | V | | | R _{ON} | $I_B = \pm 500$ mA, $V_A = \pm 25$ V (MAX14759) | | | 0.6 | 1 | Ω | | On-Resistance | | I _{COM} or I _B _ = ±250mA, V _A _= ±25V
(MAX14761/MAX14763) | | | 1.2 | 2 | | | | ΔR _{ON} | $-25V < V_A < +25V$, $I_B = \pm 500$ mA (MAX14759) | | | 2.4 | | | | On-Resistance Flatness | | $-25V < V_A < +25V$, I_B or $I_{COM} = \pm 250$ mA (MAX14761/MAX14763) | | | 5.1 | | mΩ | | | | $V_A = +25V$, $V_B = 0V$, Figure 1 (MAX14759) | | -250 | | +250 | | | A, A1, A2 Off-Leakage Current | I _{A_(OFF)} | V _A _ = +25V, V _{COM} or V _B _= 0V, Figure 1
(MAX14761/MAX14763) | | -250 | | +250 | nA | | COM, B, B1, B2 Off-Leakage | I _{COM(OFF)} ,
I _{B_(OFF)} | V_{COM} or $V_{B} = 15V$, $V_{A} = 0V$, Figure 1 (MAX14759/MAX14763) | | -100 | | +100 | nA | | Current | | V _B _ = 15V, V _A _ = 0V, Figure 1 (MAX14761) | | -100 | | +100 | | # **Above- and Below-the-Rails Low On-Resistance Analog Switches** **ELECTRICAL CHARACTERISTICS (continued)** $(V_{CC} = +3.0V \text{ to } +5.5V, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } V_{CC} = 5V \text{ and } T_A = +25^{\circ}\text{C.}) \text{ (Note 2)}$ | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | | |---|-------------------|--|------|--------|------|-------|--| | | | $V_A = \pm 25V$, B1, B2, or COM are unconnected, Figure 1 (MAX14759) | -200 | | +200 | | | | On-Leakage Current | I _{ON} | V _A = ±25V, B1, B2, or COM are unconnected, Figure 1 (MAX14761) | -100 | | +100 | nA | | | | | V _A = ±25V, B1, B2, or COM are unconnected, Figure 1 (MAX14763) | -250 | | +250 | | | | DIGITAL LOGIC | | , | | | | , | | | | | V _{CC} = 3.0V | | | 0.7 | | | | land to Malka and Land | .,, | V _{CC} = 3.6V | | | 0.7 | V | | | Input-Voltage Low | V _{IL} | V _{CC} = 4.5V | | | 0.8 | | | | | | $V_{CC} = 5.5V$ | 1 | 0.8 | 1 | | | | | | V _{CC} = 3.0V | 1.7 | | , | | | | | ,, | V _{CC} = 3.6V | 1.9 | | | - V | | | Input-Voltage High | V _{IH} | $V_{CC} = 4.5V$ | 2.0 | | | | | | | | V _{CC} = 5.5V | 2.1 | | | | | | Input Current | IL | | -1 | | +1 | μΑ | | | AC CHARACTERISTICS | | , | | | , | | | | Power-On Time | tpwron | $V_{A_{-}} = \pm 10V$, $C_{VP} = C_{VN} = 1\mu F$, Note 3 | | 320 | | ms | | | Enable Turn-On Time | t _{ON} | $V_{A_} = \pm 10V$, $R_L = 10k\Omega$, Figure 2 (MAX14759/MAX14761) | | 152 | 300 | μs | | | | 011 | $V_{A_{-}} = \pm 10V, R_{L} = 10k\Omega, Figure 2 (MAX14763)$ | | 1.12 | 1.8 | ms | | | Enable Turn-Off Time | t _{OFF} | $V_{A_{\perp}} = \pm 10V$, $R_{L} = 10k\Omega$, Figure 2 | | 300 | 1000 | μs | | | Break-Before-Make Interval | t _{BBM} | $V_{A_{-}} = 1V_{RMS}$, $R_{L} = 10k\Omega$, Figure 3 (MAX14763) | | 740 | | μs | | | Off-Isolation | V _{ISO} | $V_{A_} = 1V_{RMS}$, $f = 100kHz$, $R_L = 50\Omega$, $C_L = 15pF$, Figure 4 | | -77 | | dB | | | Crosstalk | V _{CT} | $R_S = R_L = 50\Omega$, $f = 100kHz$, $V_{COM} = 1V_{RMS}$, Figure 5 (MAX14763) | | -83 | | dB | | | -3dB Bandwidth | BW | $R_S = 50\Omega$, $R_L = 50\Omega$, $V_{A} = 1V_{P-P}$, Figure 6 | | 100 | | MHz | | | Total Harmonic Distortion Plus
Noise | THD+N | $R_S = R_L = 1k\Omega$, $f = 20Hz$ to $20kHz$ | | 0.0012 | | % | | | Charge Injection | Q | $V_A = GND, C_L = 1nF, Figure 7$ | | 1370 | | рС | | | Input Capacitance | C _{IN} | At A, A1, A2, B, B1, B2, and COM pins | | 58 | | рF | | | THERMAL PROTECTION | | | | | | | | | Thermal Shutdown Temperature | t _{HYST} | | | +154 | | °C | | | Shutdown Temperature Hysteresis | ^t SHUT | | | 24 | | °C | | | ESD PROTECTION | | | | | | | | | All Pins | | Human Body Model | | ±2 | | kV | | | | | | | | | | | Note 2: All devices are 100% production tested at $T_A = +25$ °C. Specifications over operating temperature range are guaranteed Note 3: The power-on time is defined as the settling time for the charge pump's output to reach steady-state value within 1%. # **Above- and Below-the-Rails Low On-Resistance Analog Switches** ### **Test Circuits/Timing Diagrams** Figure 1. Leakage Current Measurement Figure 2. Switching Time # **Above- and Below-the-Rails Low On-Resistance Analog Switches** Test Circuits/Timing Diagrams (continued) Figure 3. Break-Before-Make Figure 4. Off-Isolation # Above- and Below-the-Rails Low On-Resistance Analog Switches **Test Circuits/Timing Diagrams (continued)** Figure 5. Crosstalk Figure 6. Insertion Loss # Above- and Below-the-Rails **Low On-Resistance Analog Switches** **Test Circuits/Timing Diagrams (continued)** Figure 7. Charge Injection ### **Typical Operating Characteristics** $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ # Above- and Below-the-Rails **Low On-Resistance Analog Switches** ### Typical Operating Characteristics (continued) $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ # **Above- and Below-the-Rails Low On-Resistance Analog Switches** ### **Typical Operating Characteristics (continued)** $(T_A = +25$ °C, unless otherwise noted.) # **Above- and Below-the-Rails Low On-Resistance Analog Switches** ### **Pin Configurations** # **Pin Description** | | PIN | | NARAE | FUNCTION | | | |----------|----------|----------|----------|--|--|--| | MAX14759 | MAX14761 | MAX14763 | NAME | FUNCTION | | | | 1 | 1 | 1 | V_{CC} | Positive-Supply Voltage Input. Bypass V _{CC} to GND with a 0.1µF ceramic capacitor placed as close as possible to the device. | | | | 2 | 2 | 2 | GND | Ground | | | | 3 | 4 | 3 | V_N | Negative Voltage Output. Bypass V_N to GND with a 1 μ F ceramic capacitor placed as close as possible to the device. | | | | 4 | _ | _ | В | Analog Switch Common Terminal | | | | _ | _ | 4 | COM | Analog Switch Common Terminal | | | | 5 | _ | _ | А | Analog Switch Normally Open Terminal | | | | 6 | 7 | 6 | V_P | Positive Voltage Output. Bypass V_P to GND with a $1\mu F$ ceramic capacitor placed as close as possible to the device. | | | | 7 | _ | _ | N.C. | No Connection. Leave unconnected. | | | | 8 | _ | _ | EN | Switch Control Input. Drive EN high to close the switch or drive EN low to open the switch. | | | | _ | 8 | 7 | A1 | Analog Switch 1 Normally Closed Terminal | | | # **Above- and Below-the-Rails Low On-Resistance Analog Switches** ### Pin Description (continued) | | PIN | | NAME | FUNCTION | | |----------|----------|----------|------|--|--| | MAX14759 | MAX14761 | MAX14763 | NAME | FUNCTION | | | _ | 3 | _ | B1 | Analog Switch 1 Common Terminal | | | _ | 6 | 5 | A2 | Analog Switch 2 Normally Open Terminal | | | _ | 5 | _ | B2 | Analog Switch 2 Common Terminal | | | _ | 10 | _ | EN1 | Switch 1 Control Input. Drive EN1 high to open switch 1 or drive EN1 low to close switch 1. | | | _ | 9 | _ | EN2 | Switch 2 Control Input. Drive EN2 high to close switch 2 or drive EN2 low to open switch 2. | | | _ | _ | 8 | SEL | Switch Control Input. Drive SEL low to connect the COM terminal to A1 or drive SEL high to connect the COM terminal to A2. | | | _ | _ | _ | EP | Exposed Pad. Internally connected to $V_{\mbox{\scriptsize N}}$; not intended as an electrical connection. Leave exposed pad unconnected. | | #### **Detailed Description** The MAX14759/MAX14761/MAX14763 are analog switches capable of handling signals above and below their rails. These devices operate from a single +3.0V to +5.5V supply and support signals in the -25V to +25V range. The low on-resistance and high bandwidth allow for use in digital- and analog-signal switching applications. #### **Analog Signal Range** The devices switch signals in the range from -25V to +25V that are above and below their rails. The on-resistance for these devices exhibit a high degree of flatness of $2.4m\Omega$ (MAX14759 typ) and 5.1m Ω (MAX14761/MAX14763 typ) over the whole input voltage range of -25V to +25V. The analog switches allow bidirectional current flow, so A. A1. A2, B, B1, B2, and COM can be used as either inputs or outputs. #### **Bypass Capacitors** Bias stabilizing capacitors are required on the V_P and V_N pins. 1µF ceramic capacitors are suggested for effective operation. VP and VN are not intended as a power supply for other circuitry. #### **Applications Information** #### **Power-Up Conditions** Ensure that negative signals are not present on the A. B_, or COM inputs until 1 second has passed after applying V_{CC}. #### **Differential Termination Resistor Switch** The MAX14759 can be used to switch a differential termination resistor in or out. In RS-485 and CAN applications. both ends of high-speed transmission lines require termination. Figures 8 and 9 show an application of RS-485 and CAN termination using two equal resistors. These switches support RS)-485's high -7V to +12V commonmode range. In RS-232/RS-485 multiprotocol applications, the MAX14759 can be used for switching in the line-terminating resistors for RS-485 usage, and can disable the termination resistor for RS-232 operation, as shown in Figure 10. The MAX14761 is ideal for switching in fail-safe biasing resistors in RS-485 applications, as shown in Figures 11 and 12. # **Above- and Below-the-Rails Low On-Resistance Analog Switches** Figure 8. RS-485 Termination Switch Figure 9. CAN Termination Switch Figure 10. Multiprotocol Termination Switch # **Above- and Below-the-Rails Low On-Resistance Analog Switches** Figure 11. Pullup and Pulldown Resistance Switch Figure 12. Fail-Safe Biasing Network Switch # **Above- and Below-the-Rails Low On-Resistance Analog Switches** Figure 13. Single-Ended Amplifier Switching Figure 14. Differential Amplifier Switching #### **Audio Amplifier Switch** The MAX14763 is used for selecting between audio amplifier sources to drive loudspeaker applications (Figures 13 and 14.) # **Above- and Below-the-Rails Low On-Resistance Analog Switches** ### **Ordering Information/Selector Guide** | PART | TEMP RANGE | PIN-PACKAGE | FUNCTION | R_{ON} (MAX) (Ω) | |--------------|----------------|-------------|----------|-----------------------------| | MAX14759ETA+ | -40°C to +85°C | 8 TDFN-EP* | 1 x SPST | 1 | | MAX14761ETB+ | -40°C to +85°C | 10 TDFN-EP* | 2 x SPST | 2 | | MAX14763ETA+ | -40°C to +85°C | 8 TDFN-EP* | 1 x SPDT | 2 | ⁺Denotes a lead(Pb)-free/RoHS-compliant package. ### **Chip Information** ### **Package Information** For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but > **PACKAGE PACKAGE OUTLINE** LAND PATTERN **TYPE** CODE NO. NO. 8 TDFN T833+2 21-0137 90-0059 10 TDFN T1033+1 21-0137 90-0003 the drawing pertains to the package regardless of RoHS status. #### PROCESS: BICMOS ^{*}EP = Exposed pad. # Above- and Below-the-Rails Low On-Resistance Analog Switches ### **Revision History** | REVISION
NUMBER | REVISION DATE | DESCRIPTION | PAGES
CHANGED | |--------------------|---------------|-----------------|------------------| | 0 | 9/11 | Initial release | _ | Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.